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Preface

Strength of materials is a common core course requirement in U.S. universities (and those
elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and
other engineering disciplines. The subject trains a student to calculate the response of simple
structures. This elementary course exposes the student to the fundamental concepts of solid
mechanics in a simplified form. Comprehension of the principles becomes essential because
this course lays the foundation for other advanced solid mechanics analyses. The usefulness
of this subject cannot be overemphasized because strength of materials principles are
routinely used in various engineering applications. We can even speculate that some of the
concepts have been used for millennia by master builders such as the Romans, Chinese,
South Asian, and many others who built cathedrals, bridges, ships, and other structural
forms. A good engineer will benefit from a clear comprehension of the fundamental
principles of strength of materials. Teaching this subject should not to be diluted even
though computer codes are now available to solve problems.

The theory of solid mechanics is formulated through a set of formidable mathematical
equations. An engineer may select an appropriate subset to solve a particular problem.
Normally, an error in the solution, if any, is attributed either to equation complexity or to
a deficiency of the analytical model. Rarely is the completeness of the basic theory ques-
tioned because it was presumed complete, circa 1860, when Saint-Venant provided the strain
formulation, also known as the compatibility condition. This conclusion may not be totally
justified since incompleteness has been detected in the strain formulation. Research is in
progress to alleviate the deficiency. Benefits from using the new compatibility condition
have been discussed in elasticity, finite element analysis, and design optimization. In this
textbook the compatibility condition has been simplified and applied to solve strength of
materials problems.

The theory of strength of materials appears to have begun with the cantilever experiment
conducted by Galileo' in 1632. His test setup is shown in Fig. P-1. He observed that the




FIGURE P-1  Galileo’s cantilever beam experiment conducted in 1632.

strength of a beam is not linearly proportional to its cross-sectional area, which he knew to be
the case for a strut in tension (shown in Fig. P-2). Coulomb subsequently completed the beam
theory about a century later. Even though some of Galileo’s calculations were not developed
fully, his genius is well reflected, especially since Newton, born in the year of Galileo’s death,
had yet to formulate the laws of equilibrium and develop the calculus used in the analysis.
Industrial revolutions, successive wars, and their machinery requirements assisted and accel-
erated the growth of strength of materials because of its necessity and usefulness in design.
Several textbooks have been written on the subject, beginning with a comprehensive treatment
by Timoshenko,” first published in 1930, and followed by others: Popov,® Hibbeler,* Gere and
Timoshenko,” Beer and Johnston,® and Higdon et al” just to mention a few. Therefore, the
logic for yet another textbook on this apparently matured subject should be addressed. A
cursory discussion of some fundamental concepts is given before answering that question.
Strength of materials applies the basic concepts of elasticity, and the mother discipline is
analytically rigorous. We begin discussion on a few basic elasticity concepts. A student of
strength of materials is not expected to comprehend the underlying equations.

The stress (o)-strain (¢) relation {c} =[k] {e} is a basic elasticity concept. Hooke
(a contemporary of Newton) is credited with this relation. The genus of analysis is contained

FIGURE P-2 Member as a strut.
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in the material law. The constraint on stress is the stress formulation, or the equilibrium equation
(EE). Likewise, the constraint on strain becomes the strain formulation, or the compatibility
condition (CC). The material matrix [x] along with the stress and strain formulations are
required to determine the response in an elastic continuum. Cauchy developed the stress
formulation in 1822. This formulation contained two sets of equations: the field equation
T;j; + b; = 0 and the boundary condition p; = t;n;; here 1 <1, j < 3; 1; is the stress; b;, p;
are the body force and traction, respectively; and t;; is the differentiation of stress with respect
to the coordinate x;. The strain formulation, developed in 1860, is credited to Saint-Venant. This
formulation contained only the field equation. When expressed in terms of strain € it becomes

Oxx0x;  Ox;0x; B 0x;0x; B Ox;0x;

<62sij n Pey e e 0)

Saint-Venant did not formulate the boundary condition, and this formulation remained
incomplete for over a century. The missing boundary compatibility condition (BCC) has
been recently completed.”® The stress and strain formulations required to solve a solid
mechanics problem (including elasticity and strength of materials) are depicted in Fig. P-3.

|

®

®

Strain formulation

[ Stressformulation]

I

Missed until recently —

FIGURE P-3  Stress and strain formulations.

* Boundary compatibility conditions in stress (here v is Poisson’s ratio):
0 0
3 {av:(oy — vo, —vo,) —ay (1 +V)1y:} + 3 {ay(o: — vor —voy) —aw(1+V)1,.} =0
z y
0 0
3 {ay:(o, — vo, — voy) — av.(1 + V)1 } + 3 {av;(ox — voy, —vo;) —an(l 4+ V)t } =0
X t4

ag{avy (0: = voy —vo,) — aw(l +V)ty} + g {ay:(oy — vo, — vo,) —ay (1 + V)1 } =0
y X
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The discipline of solid mechanics was incomplete with respect to the compatibility
condition. In strength of materials the compatibility concept that was developed through
redundant force by using fictitious “cuts’ and closed “gaps” is quite inconsistent with the
strain formulation in elasticity. The solid mechanics discipline, in other words, has
acknowledged the existence of the CC. The CC is often showcased, but sparingly used,
and has been confused with continuity. It has never been adequately researched or under-
stood. Patnaik et al.® have researched and applied the CC in elasticity, discrete analysis, and
design optimization. The importance of the compatibility concept cannot be overstated.
Without the CC the solid mechanics discipline would degenerate into a few determinate
analysis courses that could be covered in elementary mechanics and applied mathematics.
The compatibility concept makes solid mechanics a research discipline that is practiced at
doctoral and postdoctoral levels in academia and in large research centers throughout the
world. The problem of solid mechanics was solved despite the immaturity with respect to the
CC. An elasticity solution was obtained by using the information contained in the three-
quarter portion of the pie diagram and skillfully improvising the fourth quarter. The fidelity
of such a solution depended on the complexity of the problem.’ Likewise, the strength of
materials problem was solved by manipulating the equilibrium equations while bypassing
most of the compatibility condition. Airy’s beam solution was erroneous because the CC was
bypassed. Todhunter’s remark is quoted in the footnote.

Strength of Materials

The concepts used to solve strength of materials problems are reviewed next. A simple truss
is employed to illustrate the principles. (As it turns out, analysis appears to have begun with
a truss problem.)'® The truss (shown in Fig. P-4) is assembled out of two steel bars with areas
A, and A, and lengths 1+/2 and [. The bars are hinged at nodes 1, 2, and 3. The free node 1
is subjected to a load with components P, and P,. It is required to calculate the response
consisting of two bar forces F; and F, and two nodal displacements « and v. The truss is called
determinate because the number of force and displacement variables is the same, two. The
concepts are described first for determinate analysis and then expanded to indeterminate
analysis.

1 “Important Addition and Correction. The solution of the problems suggested in the last two Articles were given—
as has already been stated—on the authority of a paper by the late Astronomer Royal, published in a report of the
British Association. I now observe, however—when the printing of the articles and engraving of the Figures is
already completed—that they cannot be accepted as true solutions, inasmuch as they do not satisfy the general
equations (164) of § 303 [note that the equations in question are the compatibility conditions]. It is perhaps as well
that they should be preserved as a warning to the students against the insidious and comparatively rare error of
choosing a solution which satisfies completely all the boundary conditions, without satisfying the fundamental
condition of strain [note that the condition in question is the compatibility condition], and which is therefore of
course not a solution at all.” Todhunter, 1. A History of the Theory of Elasticity and the Strength of Materials. UK:
Cambridge, Cambridge University Press, 1886, 1983.

xii
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FIGURE P-4 Determinate truss.

Determinate Analysis

Sign Convention

Both the load {P} and the internal bar force {F} are force quantities, yet they follow
different sign conventions. The sign convention in strength of materials is more than just
the sense of a vector. The additional deformation sign convention’ has no parallel in
elasticity and may not be essential. This textbook follows a unified sign convention, which
reduces the burden especially in constructing the bending moment and shear force diagrams
in a beam.

Equilibrium Equation (EE)

Force balance yields the equilibrium equation. The two EE of the truss (in matrix notation
[BI{F} = {P}) are solved to determine the two bar forces. The treatment of the EE is
uniform across all strength of materials textbooks, including this one on unified theory.

Force Deformation Relation (FDR)
Hooke’s law is adjusted to obtain the FDR that relates bar deformations 3, and B, to bar
forces F| and F, through the flexibility matrix [G] as {B} = [G]{F}. The treatment of FDR
is about the same in most textbooks.

Deformation Displacement Relation (DDR)

The DDR, which links bar deformations B, and B, to nodal displacements X; = u and
X, = v, is easily obtained by transposing the equilibrium matrix ([B]T) as {B} = [BIT{X})).
Solution of displacement from the DDR requires a trivial calculation because typically [B] is
a sparse triangular matrix. The DDR is avoided, neither used nor emphasized, in most
standard textbooks. Instead, displacement is calculated either by using a graphical procedure
(see Fig. P-4) or by applying an energy theorem. The counterpart of the DDR is the strain
displacement relation in elasticity. This key relation finds wide application in elasticity, yet it
is not used in strength of materials. Its nonuse can make displacement computation circui-
tous. The unified theory calculates displacement from the DDR. The treatment of problems
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with initial deformations becomes straightforward. Textbooks either avoid or dilute the
treatment of initial deformation because of temperature and settling of supports, especially
in determinate structures.

Analysis of determinate structure becomes straightforward through a simultaneous appli-
cation of the three sets of basic equations: equilibrium equation, force deformation relation,
and deformation displacement relation.

Indeterminate Analysis

Consider next a three-bar truss obtained by adding the third bar (shown in Fig. P-5) with area
As and length [v/2 to the two-bar truss as depicted in Fig. P-6. The number of displacement
variables u and v remained the same (being m = 2) between the two trusses, but the number
of bar forces F, F,, and F3 increased to three (n = 3) from two. An indeterminate structure
is obtained when n is bigger than m and their difference r = n — m = 1 represents the degree
of indeterminacy, one. The principles discussed for determinate structures are expanded to
obtain indeterminate analysis.

Sign Convention

The sign convention is not changed between determinate and indeterminate analysis. The
equilibrium concept remains the same. However, the EE matrix [B] is expanded to accom-
modate the third bar force F;. It becomes a 2 x 3 rectangular matrix [B] with two rows and
three columns, and it cannot be solved for the three bar forces. A third equation is required:
the compatibility condition. The CC in this unified theory is written as [C][G]{F} = {0},
where [C] is the r X n compatibility matrix. Simultaneous solution of the two EE

as

(4]

FIGURE P-6 Indeterminate truss.
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([B{F} = {P}) and one CC ([C][GI{F} = {0}) yields the force variable. Displacement is
back-calculated from the force deformation and the deformation displacement relation. This
direct force determination formulation is called the integrated force method (IFM). Such a
method was also envisioned by Michell,* and Love’s remark is quoted in the footnote.

Compatibility Matrix [C]
The matrix [C] is generated from the deformation displacement relation {B} = [B]” {X}. The
DDR relates three (n = 3) bar deformations B, B,, and B; to two (m = 2) displacements
X) = u and X, = v. Eliminating the two displacements yields one (r = n — m = 1) compat-
ibility condition [C]{B} = {0} with the r x n (here 1 x 3) coefficient matrix [C]. The
compatibility generation procedure is analogous to Saint-Venant’s strain formulation in
elasticity.

Determinate or indeterminate problems of strength of material can be solved by applying
four types of equation:

1. Equilibrium equation: [BI{F} = {P}

2. Deformation displacement relation: {B} = [B]"{X}
3. Compatibility condition: [C]{B} = {0}

4. Force deformation relation: {B} = [G]{F}

For determinate problems the compatibility condition degenerates to an identity
[q] — [q] = [0], and it is not required. Using the remaining three sets of equations makes
the solution process simple and straightforward. Traditional strength of materials methods
employ the equilibrium equations and the force deformation relation but improvise the
deformation displacement relation and the compatibility condition. This procedure makes
analysis obscure and can degrade solution fidelity especially for complex solid mechanics
problems.” Strength of materials analysis, despite immaturity with respect to the compat-
ibility condition, progressed but only through two indirect methods: the stiffness method and
the redundant force method. In such methods force (the dominating variable in design) is not
the primary unknown; it is back-calculated.

Stiffness Method

The stiffness method considers displacement as the primary unknown. For the three-bar truss
example, there are two unknown displacements u and v. Two equilibrium equations are
available. The two EE, when expressed in terms of the two displacements, yield a set of two
stiffness equations [K]{X} = {P} with a 2 x 2 symmetrical stiffness matrix [K]. Solution of
the stiffness equations yields the two displacements, from which the bar forces {F} can be

1 “It is possible by taking account of these relations [the compatibility conditions] to obtain a complete system of
equations which must be satisfied by stress components, and thus the way is open for a direct determination of stress
without the intermediate steps of forming and solving differential equations to determine the components of
displacements.” Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity. UK: Cambridge, Cambridge
University Press, 1927.
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FIGURE P-7 Redundant force R.

back-calculated. Generalization of this procedure, which is credited to Navier, became the
popular displacement, or stiffness, method.

Redundant Force Method

The redundant force method considers redundant force as the primary unknown. For
example, one bar of the three-bar truss is “cut” to obtain an auxiliary two-bar determinate
truss as shown in Fig. P-7. Determinate analysis yields the displacement AP at the cut
because of the applied load. The solution process is repeated for a fictitious load R, referred
to as the redundant force, in place of the third bar; and the displacement AR at the cut is
obtained in terms of the redundant force R. Because the physical truss has no real cut, the
“gap” is closed (AP 4+ AR =0), and this yields the value of the redundant force. The
solution for the indeterminate three-bar truss is obtained as the response of the determinate
structure subjected to two loads: the given external load P and a known redundant force R.
Generalization of the procedure became the redundant force method, which was popular at
the dawn of computer-automated analysis. Currently, for all practical purposes the redundant
force method has disappeared because it was cumbersome and had limited scope. This
method can be derived from the integrated force method (IFM) with some assumptions.

Other Methods

Two other methods have also been formulated: the hybrid method and the total formulation.
The hybrid method considers force and displacement as the simultaneous unknowns. The
total formulation considers force, displacement, and deformation as the primary variables.
For the sake of completeness the analysis methods are listed in Table P-1. A formulation can
also be derived from a variational functional listed in the last column. An undergraduate
student is not expected to comprehend all the information contained in Table P-1. For a
strength of materials problem the calculation of the primary variable, such as force in IFM
(or displacement in the stiffness method), may consume the bulk of the calculation. Back-
calculation of other variables from the primary unknown requires a small fraction of the
computational effort. Therefore, the force method (or IFM) and the displacement (or stiff-
ness) method are the two popular methods of analysis. The hybrid method and the total
formulation may not be efficient and are seldom used.

The impact of a less mature state of development of the compatibility condition is
sketched in Fig. P-8. The compatibility barrier blocked the natural growth of the force

Xvi
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TABLE P-1 Methods of Solid Mechanics with Associated Variational Functionals
Method Method Primary Variables Variational Functional
Number . .
Elasticity Strength of Elasticity Strength of
Materials Materials
1 Completed Integrated force Stress Force IFM variational functional
Beltrami-Michell method (IFM)
formulation (CBMF)
2 Airy formulation Redundant force Stress function Redundant force Complementary energy
method
3 Navier formulation Stiffness method Displacement Displacement or Potential energy
deflection
4 Hybrid method Reissner method Stress and Force and Reissner functional
displacement deflection
5 Total formulation Washizu method Stresses, strains, Force, deformation, Washizu functional

and displacements

and deflection




Determinate  Indeterminate structures

structures —» Stiffness
method
— A
[}
= NO YES
<
o
Method _| E » Integrated
of force ) force method
8
§ NO y YES
) Redundant

force method
— (disappeared

2nd half of ¢ PP )
20th century

FIGURE P-8 Compatibility barrier prevented extension of force method for indeterminate
structures.

method for the indeterminate problem. The analysis course split into the stiffness method and
the redundant force method. The IFM can be specialized to obtain the two indirect methods,
but the reverse course cannot be followed. The augmentation of the compatibility condition
facilitates easy movement between the strength of materials variables: from displacement to
deformation, from force to deformation, and from force to displacement, as well as from IFM
to other methods of analysis.

Unified Theory of Strength of Materials

We return to the logic for this textbook. The compatibility condition is required for analysis,
but analysis could not benefit from the CC because it was not fully understood. Now we
understand the compatibility condition and use the CC to solve strength of materials
problems. The use of the CC has systematized analysis. This textbook, by combining the
new compatibility concept with the existing theory, has unified the strength of materials
theory. For determinate structures the calculation of displacement becomes straightforward.
A new direction is given for the analysis of indeterminate structures. Treatment of initial
deformation by the IFM is straightforward because it is a natural parameter of the compat-
ibility condition: as load is to equilibrium, so initial deformation is to compatibility. Learning
IFM will expose the student to almost all strength of materials concepts because the direct
force determination formulation uses them all. The student must learn the stiffness method
and should be able to solve simple problems by using the redundant force method. This
textbook provides for all three methods and traditional techniques.

This textbook does not duplicate any existing textbook. The first chapter introduces the
subject. Chapters 2 through 5 treat determinate structures: truss, beam, shaft, and frame.
Chapters 6 through 9 are devoted to indeterminate structures: truss, beam, shaft, and frame.
Two-dimensional stress analysis is the subject matter of Chapter 10. Column buckling and
energy theorems are given in Chapters 11 and 12, respectively. Chapter 13 introduces the

xviii
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finite element method. Special topics, including Navier’s table problem, are discussed in the
last chapter. Appendixes 1 through 6 discuss matrix algebra, properties of plane area, systems
of units, sign convention, properties of materials, and strength of materials formulas, respec-
tively. Appendix 7 introduces the reader to the computer code for solving strength of materials
problems by using various methods of analysis. The FORTRAN code supplied with the solution
manual of the textbook is also available at the website http://www.patnaik-ue.org/ifm/. The last
appendix lists the answers to the problems.

The textbook covers standard topics of strength of materials. Both SI (International
System of Units) and USCS (U.S. Customary Systems) system of units are employed. The
treatment of the material is suitable for sophomore and junior engineering students. The book
includes more material than can be covered in a single course. The teacher may choose to
select topics for a single course; for example emphasizing fundamental concepts while
reducing rigor on theoretical aspects. Alternatively, determinate analysis (first five chapters)
along with principal stress calculation in Chapter 10 and column buckling in Chapter 11 can
be covered in a first course in the sophomore year. Indeterminate analysis can be covered as
a sequel in the junior year. Freshmen graduate students can benefit from the advanced
materials included in the book. It is written to serve as a standard textbook in the engineering
curriculum as well as a permanent professional reference.

It is impossible to acknowledge everyone who has contributed to this book. We express
gratitude to them. A major debt is owed to our two NASA (Glenn Research Center)
colleagues: James D. Guptill and Rula M. Coroneos.

Historical Sketch

Some of the scientists who contributed to the strength of materials are listed in Fig. P-9. The
subject was developed over centuries, beginning with Leonardo da Vinci, circa 1400s, to the
present time. Leonardo, born a century before Galileo, understood the behavior of machine
components and the work principle. Galileo Galilei began mechanics and material science and
describes them in his book Dialogues Concerning Two New Sciences." Robert Hooke, a
contemporary of Newton, conducted tests on elastic bodies and is credited with the material
law. Isaac Newton has given us the laws of motion. The Bernoulli brothers (Jacob and Johan)
have contributed to virtual displacement and the elastic curve for a beam. Leonhard Euler is
credited with the beam elastic curve and the nonlinear coordinate system. Charles-Augustin de
Coulomb made contributions to torsion and beam problems. Joseph-Louis Lagrange formulated
the principle of virtual work. Simeon-Denis Poisson has given us Poisson’s ratio. Claude Louis
Marie Henri Navier is credited with the displacement method. Jean Victor Poncelet is acknowl-
edged for vibration of a bar due to impact load. Thomas Young introduced the notion of
modulus of elasticity. Augustin Cauchy is credited with the stress formulation.

August Ferdinand Mdbius contributed to the analysis of determinate truss. Gabrio Piola is
acknowledged for analysis of the stress tensor. Felix Savart conducted acoustic experiments.
Charles Greene contributed to the graphical analysis of bridge trusses. Gabriel Lame con-
cluded the requirement of two elastic constants for an isotropic material. Jean-Marie
Duhamel contributed to vibration of strings. Adhémar Jean Claude Barré de Saint-Venant
is credited with the strain formulation. Franz Neumann contributed to photoelastic stress
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Gallagher (1927-1997)—
Levy (1886-1970)—
Timoshenko, S. (1878-1966) r—
Ritz, W. (1878-1909)—
Michell (1863-1940) —

Love (1863-1940) —

Foppl (1854-1924) —
Muller-Breslau (1851-1925) r—
Voigt (1850-1919) —
Engesser (1848-1931)1—
Castigliano (1847-1884)—
Rayleigh (1842-1919) —
Boussinesq (1842-1929) —
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FIGURE P-9 Scientists who contributed to strength of materials.

analysis. Emile Clapeyron is credited with a strain energy theorem. George Biddel Airy
introduced the stress function in elasticity. Mikhail Vasilievich Ostrogradsky is known for
his work in variational calculus. Squire Whipple was the first to publish a book on truss
analysis.'” George Gabriel Stokes is recognized for his work in hydrodynamics. Dimitrii
Ivanovich Zhuravskii, also known by D. J. Jourawski, developed an approximate theory for
shear stress in beams. Gustav Robert Kirchhoff is credited with the theory of plates. James
Clerk Maxwell completely developed photoelasticity. Alfred Clebsch calculated beam
deflection by integrating across points of discontinuities. Otto Mohr is credited with the
graphical representation of stress. Emile Winkler is recognized for the theory of bending of
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curved bars. Eugenio Beltrami contributed to the Beltrami-Michell stress formulation.
Joseph Boussinesq calculated the distribution of pressure in a medium located under a body
resting on a plane surface. Lord Rayleigh formulated a reciprocal theorem for a vibrating
system. Alberto Castigliano’s contribution included the two widely used strain energy
theorems.

Friedrich Engesser made important contributions to buckling and the energy method.
Woldemar Voigt settled the controversy over the raiconstant and multiconstant theories.
H. Muller-Breslau developed a method for drawing influence lines by applying unit load.
August Foopl contributed to space structures. The outstanding elastician Augustus Edward
Hough Love is credited with discovering earthquake waves, referred to as Love-waves. John
Henry Michell showed that the stress distribution is independent of the elastic constants of an
isotropic plate if body forces are absent and the boundary is simply connected. Walter Ritz
developed a powerful method for solving elasticity problems. Stephen Prokofyevich
Timoshenko'' revolutionized the teaching of solid mechanics through his 12 textbooks.
Maurice Levy calculated stress distribution in elasticity problems. Richard H. Gallagher
made outstanding contributions to finite element analysis.
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Introduction

Strength of materials is a branch of the major discipline of solid mechanics. This subject is
concerned with the calculation of the response of a structure that is subjected to external
load. A structure’s response is the stress, strain, displacement, and related induced variables.
External load encompasses the mechanical load, the thermal load, and the load that is
induced because of the movement of the structure’s foundation. The response parameters
are utilized to design buildings, bridges, powerplants, automobiles, trains, ships, submarines,
airplanes, helicopters, rockets, satellites, machinery, and other structures. A beam, for
example, is designed to ensure that the induced stress is within the capacity of its material.
Thereby, its breakage or failure is avoided. Likewise, the magnitude of compressive stress
in a column must be controlled to prevent its buckling. Excessive displacement can crack
a windowpane in a building or degrade the performance of a bridge. The magnitude and
direction of displacement must be controlled in the design of an antenna to track a signal
from a satellite. Displacement also plays an important role in calculating load to design
airborne and spaceborne vehicles, like aircraft and rockets. Strain is important because the
failure of a material is a function of this variable.

Response calculation, a primary objective of the solid mechanics discipline, is addressed
at three different levels: elasticity, theory of structures, and strength of materials. If the
analysis levels are arranged along a spectrum, elasticity occupies the upper spectrum.
Strength of materials, the subject matter of this book, belongs to the bottom strata. The
theory of structures is positioned at the middle. The fidelity of response improves as we
move from the lower to the upper spectrum methods, but at a cost of increased mathematical
complexity. For example, calculating an elasticity solution to a simple beam problem can be
quite difficult. In contrast, the strength of materials ballpark solution is easily obtained. This
solution can be used in preliminary design calculations. Quite often the strength of materials
result is considered as the benchmark solution against which answers obtained from
advanced methods are compared. The upper spectrum methods have not reduced the




importance of strength of materials, the origin of which has been traced back to Galileo, who
died in 1642 on the day Newton was born. An understanding of the strength of materials
concepts will benefit an engineer irrespective of the field of specialization. It is, therefore, a
common core course in almost all engineering disciplines. This course, in a simplified form,
will expose students to the fundamental concepts of solid mechanics. Comprehension of other
solid mechanics subjects can be challenging if the student is not well versed in this course
because strength of materials principles lay the foundation for other advanced courses.

This chapter introduces the vocabulary, parameters, units of measurement, sign conven-
tion, and some concepts of strength of materials. If enburdened, a reader may skip sections
of this chapter and proceed to the subsequent chapter. It is recommended, however, that
the reader revisits this chapter until he or she has a complete comprehension of the
material.

The parameters and variables of strength of materials problems separate into two distinct
categories. The first group pertains to the information required to formulate a problem, such as
the configuration of the structure, the member properties, the material characteristics, and the
applied loads. This group we will refer to as parameters, which become the input data when the
problem is solved in a computer. These parameters must be specified prior to the commence-
ment of calculations. The response of the structure, such as the stress, strain, and displacement
determined from the strength of materials calculation, forms the second group. We will call
these the response variables that constitute the output data when the problem is solved in
a computer. The important variables, keywords, and concepts discussed in this chapter are listed
in Table 1-1. A description of the keywords cannot be given in the sequence shown in Table 1-1
because they are interrelated. For example, we have to discuss stress and strain, which belong to
the response category, prior to describing other material parameters.

Structures and Members

Structures are made of a few standard members, also referred to as elements. Our analysis is
confined primarily to bar, beam, shaft, and frame members, and the structures that can be
made of these elements. The structure types discussed in this book are

1. A truss structure or simply a truss: It is made of bar members. The truss shown in
Fig. 1-1a is made of four bar members and four joints, also called nodes. It is subjected
to load P; at node 2 along the x-coordinate direction and to load P, at node 3 along
the negative y-direction.

TABLE 1-1 Key Words in Strength of Materials

Structure Parameters Response Concepts Others

(Member) (Input Data) Variables

Truss (bar) Member property Internal force Equilibrium Measurement unit
Beam (beam) Load Stress Determinate Sign convention
Shaft (shaft) Material characteristic Displacement Indeterminate

Frame (frame) Deformation

Shell Strain
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FIGURE 1-1 Structures and members.

2. Beam: Simple and continuous beams are made of beam members. The beam shown
in Fig. 1-1b has two members and three nodes. It supports load P at node 3 along
the negative y-direction.

3. Shaft: Torsional shafts are made of shaft members. A shaft subjected to a torque T is
shown in Fig. 1-1c.

4. Frame: Frame structures are made of frame members. A frame element combines the
action of a bar and a beam member. The portal frame shown in Fig. 1-1d has three
members and four nodes. It is subjected to load P along the x-coordinate direction
at node 3.

5. Shell: An elementary treatment of simple shells is also included.
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1.1 Systems of Units

Measurement of the parameters and variables requires the adoption of a system of units.
There are two popular systems: the International System of Units (SI) and the U.S.
Customary System (USCS). This book uses both SI and USCS systems. Both systems have
several base units from which all other units are derived.

In the USCS, the base units of importance are pound-force (Ibf), foot (ft), second (s),
Fahrenheit (°F), and degree (°). Pound-force is the unit of force; for example, a man can
easily apply a 100-1bf while pushing a stalled car. A foot is the unit of length: the height of a
person can be 6 ft. A second is the unit of time in both the USCS and SI systems: a tiger can
leap 70ft in 1s. A degree Fahrenheit is the unit of temperature: the outside temperature is
70°F. A degree is the unit to measure angles: a right angle is equal to 90°.

The base units in the SI system are kilogram (kg), meter (m), second (s), kelvin (K),
and radian (rad). The kilogram is the unit of mass: the mass of a beam is 25kg. The
meter is the unit of length: the height of a person can be 1.83 m. The second is the unit of
time: a tiger can leap 21.35m in 1s. Kelvin is the unit of temperature, an alternate unit
being degree Celsius (°C). The two temperature scales differ by the absolute zero tempera-
ture, which is set at —273.15°C; [#(°C) = #(K) — 273.15]. We will use the Celsius scale. The
outside temperature is 21°C or 294.15K. The radian is the unit to measure angles: a right
angle is 1.571 rad.

The dimensions of a quantity can be expressed in terms of the base units of mass M,
length L, time 7, temperature ¢, and angle 0. Take, for example, force F. The dimension of
force, which is the product of mass and acceleration, can be derived as

F = mass x acceleration
= M x (acceleration = time rate of change of velocity)
= M x (velocity /time) = MT~" x (time rate of change of distance)
= MT~" (distance/time)
=MLT ' x LT™' = MLT
F =MLT?

The dimension of force is: mass x length + time squared, or MLT 2. Table 1-2 provides
the dimensions of a few quantities along with the factor to convert from USCS to SI units and
vice versa.

EXAMPLE 1-1

The cantilevered beam shown in Fig. 1-2 is 30 ft long, 2 ft deep, and 6 in. thick. It is
made of steel with a mass density of 15.2 slug/ft>. It supports a 1000-Ibf load at a 30°
inclination to the vertical in the x—y plane. The temperature of the beam varies linearly
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FIGURE 1-2 Cantilever beam.

from 250°F at the support to 70°F at its free end. Calculate its mass and weight, and
convert the parameters into SI units.

Solution

Length: (¢ =30ft=230 x 12 =360in.

¢=30x0.305=9.15m = 915cm
Depth: d =2ft=24in.
d=2x0305=0.6lm=6lcm
Thickness: t=6in. = 0.5ft

t=0.5x%0.305=0.152m = 15.24cm

Volume: V = /{dt=30x2x 1/2=30ft> = 30cft
V =30 x 12° =51.84 x 10°in.?
V =9.15 x 0.61 x 0.152 = 0.85m> = 